If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+14t-36=0
a = 2; b = 14; c = -36;
Δ = b2-4ac
Δ = 142-4·2·(-36)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-22}{2*2}=\frac{-36}{4} =-9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+22}{2*2}=\frac{8}{4} =2 $
| 9(3+k)=-135 | | -6=3y-12 | | 21/4=2w | | 3-4c=21 | | v/17-7=-2 | | 2=-r/4-1 | | x-4.88=3.79 | | -6q=-4q+10 | | 2x25=180 | | A^2xB^2=C^2 | | c/12+2=9 | | 33/x=15/10 | | 5a-6=4a+3,10 | | 2(b+5)=-2(3) | | 15/10=33/x | | -3(x+2)-2(x-4)+8=-1 | | 10n-1=9n+6 | | 5x +3=8 | | (10x=7)(5x+3) | | 2/1/4=2w | | Y=2p+3p^2 | | -9+4x=1-3x÷5 | | -10t-7=3 | | -5(y+6)=-5 | | 9x+3+4=29 | | (5x+13)/(6x-2)=36/30 | | 6=30x+6 | | -3c-18=-3 | | 2h–8=10 | | w/12+9=16 | | 3d-18=39 | | 5n=44 |